自定义日志/监控打点/trace
对于 RPC 框架来说,日志、监控和 trace 是很重要的组成部分,云原生环境下可观测性基本依赖这三件套。
Volo 框架使用的是 tracing 库来记录 Volo 自己的日志,同时也鼓励用户使用 tracing 库来输出日志和 trace 信息,这样就可以直接复用 Rust 社区现有的相关生态了,比如 tracing-opentelemetry 等库。
用户也可以通过编写自己的 Service 和 Layer 来给所有的请求加上日志信息或者监控打点信息,如:
pub struct ClientLogLayer;
impl<S> Layer<S> for ClientLogLayer {
type Service = LogService<S>;
fn layer(self, inner: S) -> Self::Service {
LogService {
inner,
}
}
}
#[derive(Clone)]
pub struct LogService<S> {
inner: S,
}
impl<Cx, Req, S> Service<Cx, Req> for LogService<S>
where
S: Service<Cx, Req> + Send + 'static + Sync,
Cx: Context<Config = volo_thrift::context::Config> + 'static + Send,
Req: Send + 'static,
{
type Response = S::Response;
type Error = S::Error;
type Future<'cx> = impl Future<Output = Result<Self::Response, Self::Error>> + 'cx;
fn call<'cx, 's>(&'s self, cx: &'cx mut Cx, req: Req) -> Self::Future<'cx>
where
's: 'cx,
{
async move {
let tick = quanta::Instant::now();
let ret = self.inner.call(cx, req).await;
let elapsed = quanta::Instant::now().duration_since(tick);
tracing::info!(rpc_type = "rpcCall", cost = elapsed.as_micros() as i64,);
ret
}
}
}
监控打点信息也是类似。
最后修改
August 3, 2023
: chore: use codetab (#745) (015155e)